2 research outputs found

    Lifetime centric load balancing mechanism in wireless sensor network based IoT environment

    Get PDF
    Wireless sensor network (WSN) is a vital form of the underlying technology of the internet of things (IoT); WSN comprises several energy-constrained sensor nodes to monitor various physical parameters. Moreover, due to the energy constraint, load balancing plays a vital role considering the wireless sensor network as battery power. Although several clustering algorithms have been proposed for providing energy efficiency, there are chances of uneven load balancing and this causes the reduction in network lifetime as there exists inequality within the network. These scenarios occur due to the short lifetime of the cluster head. These cluster head (CH) are prime responsible for all the activity as it is also responsible for intra-cluster and inter-cluster communications. In this research work, a mechanism named lifetime centric load balancing mechanism (LCLBM) is developed that focuses on CH-selection, network design, and optimal CH distribution. Furthermore, under LCLBM, assistant cluster head (ACH) for balancing the load is developed. LCLBM is evaluated by considering the important metrics, such as energy consumption, communication overhead, number of failed nodes, and one-way delay. Further, evaluation is carried out by comparing with ES-Leach method, through the comparative analysis it is observed that the proposed model outperforms the existing model
    corecore